		Applications	Conclusion
000 0000000	000000 0000000	00000 000000	

Geometrically Stopped Markovian Random Growth Processes and Pareto Tails

Brendan K. Beare¹ Alexis Akira Toda²

¹University of Sydney

²University of California San Diego

March 10, 2020

USyd & UCSD

< □ > < 同 >

B. K. Beare & A. A. Toda

Introduction ●0000	Main result 000 0000000	Proof of main result 000000 0000000	Applications 00000 000000	Conclusion

This paper

We study the tail behavior of

$$W_T = \sum_{t=1}^T X_t,$$

where

- $\{X_t\}_{t=1}^{\infty}$: some stochastic process,
- T: some stopping time.
- Main result: W_T has exponential tails under fairly mild conditions; simple formula for the tail exponent α.
- ► Example: if {X_t}[∞]_{t=1} is iid and T is geometric with mean 1/p, then

$$(1-p)\mathsf{E}[\mathrm{e}^{\alpha X}] = 1.$$

B. K. Beare & A. A. Toda

Why this problem is interesting

 Many empirical size distributions obey power laws (e.g., city size, firm size, income, consumption, wealth, etc.)

$$P(S > s) \sim s^{-\alpha},$$

where S: size.

- ▶ Popular explanation is "random growth model": $S_t = G_t S_{t-1}$, where *G*: gross growth rate.
- ► Taking logarithm and setting W_t = log S_t, X_t = log G_t, we obtain the random walk

$$W_t = W_{t-1} + X_t.$$

Hence if $W_0 = 0$, we have $W_T = \sum_{t=1}^T X_t$.

B. K. Beare & A. A. Toda

Geometrically Stopped Markovian Random Growth Processes and Pareto Tails

USyd & UCSD

Introduction 00000	Main result 000 0000000	Proof of main result 000000 0000000	Applications 00000 000000	Conclusion

Questions

- Most existing explanations using random growth assume iid Gaussian environment (geometric Brownian motion; Reed, 2001).
- Given ubiquity of power law distributions in empirical data (likely non-iid and non-Gaussian), generative mechanism should be robust (not depend on iid Gaussian assumptions).

Questions:

- 1. Do non-Gaussian, Markovian random growth processes generate Pareto tails?
- 2. If so, how is Pareto exponent determined and how does it depend on exogenous parameters?

(B)

Introduction 00000	Main result 000 0000000	Proof of main result 000000 000000	Applications 00000 000000	Conclusion

Contribution

- Characterize tail behavior of random growth models with non-Gaussian, Markovian shocks.
 - 1. Analytical determination of Pareto exponent.
 - 2. Comparative statics.
- Two economic applications:
 - 1. Characterize Pareto tail behavior of wealth distribution in heterogeneous-agent models with idiosyncratic investment risk.
 - 2. Estimate random growth model using Japanese municipality population data. Model consistent with observed Pareto exponent but *only after* allowing for Markovian dynamics.

글 > : < 글 >

Introduction 0000●	Main result 000 0000000	Proof of main result 000000 0000000	Applications 00000 000000	Conclusion

Literature

Power law Wold & Whittle (1957), Simon & Bonini (1958), Gabaix (1999), Reed (2001), Toda (2014) Tauberian theorem Graham & Vaaler (1981), Nakagawa (2007) Wealth distribution Benhabib et al. (2011, 2015, 2016), Toda (2014, 2019), Acemoglu & Cao (2015), Toda & Walsh (2015, 2017), Gabaix et al. (2016), Nirei & Aoki (2016), Aoki & Nirei (2017), Cao & Luo (2017), Stachurski & Toda (2019), Ma et al. (2020)

< 3 > 4 3 > 3

Introduction 00000	Main result ●00 ○000000	Proof of main result 000000 0000000	Applications 00000 000000	Conclusion
Basic setup				

Basic setup Object of interest:

We seek to characterize the behavior of tail probabilities

 $P(W_T > w)$ and $P(W_T < -w)$

as $w \to \infty$, where...

프 > > ㅋ ㅋ >

B. K. Beare & A. A. Toda

Introduction 00000	Main result ●00 ○000000	Proof of main result 000000 0000000	Applications 00000 000000	Conclusion
Basic setup				

Object of interest:

We seek to characterize the behavior of tail probabilities

$$P(W_T > w)$$
 and $P(W_T < -w)$

as $w \to \infty$, where. . .

Markov additive process:

• $\{W_t, J_t\}_{t=0}^{\infty}$ is a Markov additive process, which means...

Introduction 00000	Main result ●00 ○○○○○○○	Proof of main result 000000 0000000	Applications 00000 000000	Conclusion
Basic setup				

Object of interest:

We seek to characterize the behavior of tail probabilities

$$P(W_T > w)$$
 and $P(W_T < -w)$

as $w \to \infty$, where. . .

Markov additive process:

• $\{W_t, J_t\}_{t=0}^{\infty}$ is a Markov additive process, which means... Hidden Markov state:

- {J_t}[∞]_{t=0} is a time homogeneous Markov chain taking values in *N* = {1,..., N}.
- The transition probability matrix is $\Pi = (\pi_{nn'})$, where

$$\pi_{nn'} = \mathrm{P}(J_1 = n' \mid J_0 = n).$$

▶ Initial condition: ϖ is the $N \times 1$ vector of probabilities $P(J_0 = n), n = 1, ..., N.$

B. K. Beare & A. A. Toda

USyd & UCSD

Introduction 00000	Main result ○●○ ○○○○○○	Proof of main result 000000 0000000	Applications 00000 000000	Conclusion
Basic setup				

Increment process:

•
$$W_0 = 0$$
, $W_t = \sum_{s=1}^t X_s$.

- Distribution of increment $X_t = W_t W_{t-1}$ depends only on $(J_{t-1}, J_t) = (n, n')$. Markov additive process
- Special cases:

1. If
$$N = 1$$
, then $\{X_t\}_{t=1}^{\infty}$ is iid.

2. If $X_t = \text{constant conditional on } J_t$, then $\{X_t\}_{t=1}^{\infty}$ is a finite-state Markov chain.

Stopping time:

- $\{W_t\}_{t=0}^{\infty}$ stops with state-dependent probability.
- v_{nn'} = P(T > t | J_{t-1} = n, J_t = n', T ≥ t): conditional survival probability.
- $V = (v_{nn'})$: survival probability matrix.

・ロ> < 団> < E> < E> 三目目 のQC

Introduction 00000	Main result 00● 0000000	Proof of main result 000000 0000000	Applications 00000 000000	Conclusion
Basic setup				

Conditional moment generating function:

► For
$$s \in \mathbb{R}$$
, define
 $M_{nn'}(s) = \mathsf{E}\left[e^{sX_1} \mid J_0 = n, J_1 = n'\right] \in (0, \infty].$

• $M(s) = (M_{nn'}(s))$: $N \times N$ matrix of conditional MGFs.

Region of convergence:

We define

$$\mathcal{I} = \left\{ s \in \mathbb{R} : M_{nn'}(s) < \infty \text{ for all } n, n' \in \mathcal{N}
ight\}.$$

- *I* is an interval containing zero, with possibly infinite endpoints.

USvd & UCSD

Introduction 00000	Main result ○○○ ●○○○○○○	Proof of main result 000000 0000000	Applications 00000 000000	Conclusion
Main result				

Assumption

Assumption

- 1. The matrix $V \odot \Pi$ is irreducible.
- 2. There exists a pair (n, n') such that $v_{nn'} < 1$ and $\pi_{nn'} > 0$.

∃ → < ∃ →</p>

Introduction 00000	Main result ○○○ ●○○○○○○	Proof of main result 000000 0000000	Applications 00000 000000	Conclusion
Main result				

Assumption

Assumption

- 1. The matrix $V \odot \Pi$ is irreducible.
- 2. There exists a pair (n, n') such that $v_{nn'} < 1$ and $\pi_{nn'} > 0$.
- $V \odot \Pi$ is Hadamard (entry-wise) product.
- A matrix A is irreducible if for any pair (n, n'), there exists k such that |A|^k_{nn'} > 0.
- Intuitively, irreducibility of V ⊙ Π means we can transition from n to n' eventually without stopping.
- ▶ $v_{nn'} < 1$ and $\pi_{nn'} > 0$ guarantees $T < \infty$ almost surely.
- ρ(A): spectral radius (largest absolute value of all eigenvalues) of A.

Introduction 00000	Main result ○○○ ○●○○○○○	Proof of main result 000000 0000000	Applications 00000 000000	Conclusion
Main result				

Main result

Theorem

As a function of $s \in I$, the spectral radius $\rho(V \odot \Pi \odot M(s))$ is convex and less than 1 at s = 0. There can be at most one positive $\alpha \in I$ such that

 $\rho(V \odot \Pi \odot M(\alpha)) = 1,$

and if such α exists in the interior of ${\mathcal I}$ then

$$\lim_{w\to\infty}\frac{1}{w}\log P(W_T > w) = -\alpha.$$

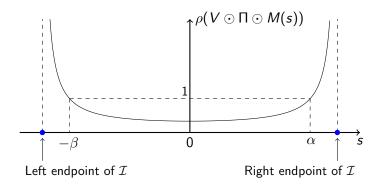
• Similar statement holds for lower tail $(-\beta < 0 \text{ instead of } \alpha > 0)$.

USvd & UCSD

B. K. Beare & A. A. Toda

	Main result		Applications	Conclusion
	000 000000	000000 0000000	00000 000000	
Main result				

Determination of α and β



< 🗗

3.0

USyd & UCSD

B. K. Beare & A. A. Toda

Introduction 00000	Main result ○○○ ○○○●○○○○	Proof of main result 000000 0000000	Applications 00000 000000	Conclusion
Main result				

Refinement

Theorem

Let everything be as above. Then there exist A, B > 0 such that

$$\lim_{w \to \infty} e^{\alpha w} P(W_T > w) = A,$$
$$\lim_{w \to \infty} e^{\beta w} P(W_T < -w) = B$$

except when there exist c>0 and $a_{nn'}\in\mathbb{R}$ such that

$$\operatorname{supp}(X_1|J_0=n,J_1=n')\subset a_{nn'}+c\mathbb{Z}$$

イロト イポト イヨト イヨト

USvd & UCSD

for all $n, n' \in \mathcal{N}$. (We can take $a_{nn} = 0$ if $v_{nn}\pi_{nn} > 0$.)

B. K. Beare & A. A. Toda

	Main result		Applications	Conclusion
	000 0000000	000000 0000000	00000 000000	
Main result				

Geometrically stopped random growth processes

Theorem

Let everything be as above. Let $S_0 > 0$ be a random variable independent of W_T satisfying $E[S_0^{\alpha+\epsilon}] < \infty$ for some $\epsilon > 0$, and define the random variable $S = S_0 e^{W_T}$. Then there exist numbers $0 < A_1 \le A_2 < \infty$ such that

$$A_1 = \liminf_{s \to \infty} s^{lpha} \mathrm{P}(S > s) \leq \limsup_{s \to \infty} s^{lpha} \mathrm{P}(S > s) = A_2,$$

with $A_1 = A_2 = A$ unless unless there exist c > 0 and $a_{nn'} \in \mathbb{R}$ such that $supp(X_1|J_0 = n, J_1 = n') \subset a_{nn'} + c\mathbb{Z}$ for all $n, n' \in \mathcal{N}$.

• S has a Pareto upper tail with exponent α .

(日) (同) (日) (日) (日)

Comparative statics

• Pareto exponent α is implicitly determined by

 $\rho(V \odot \Pi \odot M(\alpha)) = 1.$

How does it vary with exogenous parameters?

> Perturb lifespan, growth, volatility, and persistence. Assume

- ► distribution of X_t conditional on $(J_{t-1}, J_t) = (n, n')$ is parametrized as $\mu_{nn'} + \sigma_{nn'} Y_{nn'}$, where $Y_{nn'}$ has mean zero,
- Itransition probability matrix is Π(τ) = τI + (1 − τ)Π for some fixed Π.

・ロト ・回ト ・ヨト・モート

= ~ ~ ~

USvd & UCSD

Use implicit function theorem.

	Main result		Applications	Conclusion
	000 000000	000000 0000000	00000 000000	
Main result				

Comparative statics

Theorem

Let $\theta = (V, \mu, \sigma, \tau)$ be parameters, and suppose assumptions of Theorem satisfied at θ^0 . Then there exists an open neighborhood Θ of θ^0 such that Pareto exponent $\alpha(\theta)$ is continuously differentiable on Θ . Furthermore,

- 1. $\partial \alpha / \partial v_{nn'} \leq 0$: lifespan $\uparrow \implies$ inequality \uparrow .
- 2. $\partial \alpha / \partial \mu_{nn'} \leq 0$: growth $\uparrow \implies$ inequality \uparrow .
- 3. $\partial \alpha / \partial \sigma_{nn'} \leq 0$: volatility $\uparrow \implies$ inequality \uparrow .
- 4. If $v_{nn'}$ and X_t depend only on current state $J_t = n'$, then $\partial \alpha / \partial \tau \leq 0$: persistence $\uparrow \implies$ inequality \uparrow .

B. K. Beare & A. A. Toda

< 日 > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

		Proof of main result	Applications	Conclusion
	000 0000000	• 00000 0000000	00000 000000	
Idea				

Proof of main result

- The proof uses several mathematical results:
 - 1. Nakagawa's Tauberian Theorem and its refinement
 - 2. Convex inequalities for spectral radius
 - 3. Perron-Frobenius Theorem
 - 4. Residue formula for matrix pencil inverses
- ► For the iid case, we can avoid 2-4 above.

Introduction 00000	Main result 000 0000000	Proof of main result 00000 000000	Applications 00000 000000	Conclusion
Idea				

Laplace transform

▶ For a random variable X with cdf F, let

$$M(s) = \mathsf{E}[\mathrm{e}^{sX}] = \int_{-\infty}^{\infty} \mathrm{e}^{sx} \, \mathrm{d}F(x)$$

be its moment generating function (mgf), which is also known as the (two-sided) Laplace transform.

- Since e^{sx} convex in s, so is M(s); hence its domain

 I = {s ∈ ℝ : M(s) < ∞} is an interval. Let −β ≤ 0 ≤ α be boundary points (may be 0 or ±∞).

- For $z \in \mathbb{C}$, by definition of Lebesgue integral,

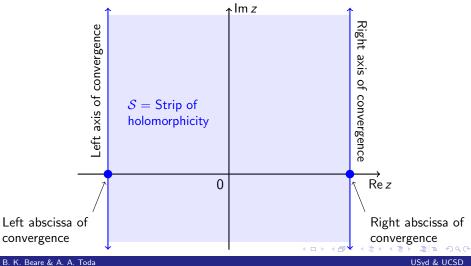
$$M(z) = \mathsf{E}[\mathrm{e}^{zX}] = \int_{-\infty}^{\infty} \mathrm{e}^{zx} \,\mathrm{d}F(x)$$

exists and finite if and only if $\operatorname{Re} z \in \mathcal{I}$. M(z) holomorphic on strip of analiticity $\mathcal{S} = \{z \in \mathbb{C} : -\beta < \operatorname{Re} z < \alpha\}$.

B. K. Beare & A. A. Toda

		Proof of main result	Applications	Conclusion
	000 0000000	000000 0000000	00000 000000	
Idea				

Strip of holomorphicity



B. K. Beare & A. A. Toda

Introduction 00000	Main result 000 0000000	Proof of main result 000000 000000	Applications 00000 000000	Conclusion
Idea				

Tauberian theorem

Theorem (Essentially, Theorem 5* of Nakagawa, 2007)

Let X be a real random variable and $M(z) = E[e^{zX}]$ its Laplace transform with right abscissa of convergence $0 < \alpha < \infty$ and strip of holomorphicity S. Suppose $A := \lim_{s\uparrow\alpha} (\alpha - s)M(s)$ exists, and let B be the supremum of all b > 0 such that $M(z) + A(z - \alpha)^{-1}$ continuously extends to $S_b^+ = S \cup \{z \in \mathbb{C} : z = \alpha + it, |t| < b\}$. Suppose that B > 0. Then we have

$$\begin{split} \frac{2\pi A/B}{\mathrm{e}^{2\pi\alpha/B}-1} &\leq \liminf_{x\to\infty} \mathrm{e}^{\alpha x} \mathrm{P}(X > x) \\ &\leq \limsup_{x\to\infty} \mathrm{e}^{\alpha x} \mathrm{P}(X > x) \leq \frac{2\pi A/B}{1-\mathrm{e}^{-2\pi\alpha/B}}, \end{split}$$

where the bounds should be read as A/α if $B = \infty$.

B. K. Beare & A. A. Toda

Introduction 00000	Main result 000 0000000	Proof of main result 0000€0 0000000	Applications 00000 000000	Conclusion
Idea				

Discussion

• By previous result, taking logarithm and letting $x \to \infty$, we get

$$\lim_{x\to\infty}\frac{\log P(X>x)}{x}=-\alpha,$$

which is Nakagawa (2007)'s main result.

- Example: mgf of exponential distribution with exponent α is

$$M(z) = \int_0^\infty \alpha \mathrm{e}^{-\alpha x} \mathrm{e}^{zx} \, \mathrm{d}x = \frac{\alpha}{\alpha - z},$$

イロト 不得 トイヨト イヨト ヨ

USvd & UCSD

so we can take $A = \alpha$ and $B = \infty$.

B. K. Beare & A. A. Toda

		Proof of main result	Applications	Conclusion
	000 0000000	000000 0000000	00000 000000	
ا مرادا				

Proof of main result for iid case

- Let $\{X_t\}_{t=1}^{\infty}$ be iid with mgf $M_X(z) = \mathsf{E}[\mathrm{e}^{zX}]$.
- mgf of $W_T = \sum_{t=1}^T X_t$ when T is geometric with mean 1/p is

$$M_W(z) = \sum_{k=1}^{\infty} (1-p)^{k-1} p(M_X(z))^k = \frac{pM_X(z)}{1-(1-p)M_X(z)}.$$

- Since M_X(z) holomorphic, pole of M_W(z) satisfies M_X(z) = ¹/_{1−p}.
- Using convexity of $M_X(s + it)$ with respect to s, easy to show pole is simple.
- Hence assumption of Tauberian theorem satisfied. Tail exponents satisfy

$$\mathsf{E}[\mathrm{e}^{\alpha X}] = \mathsf{E}[\mathrm{e}^{-\beta X}] = \frac{1}{1-\rho}$$

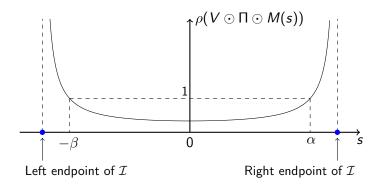
(ロ) (四) (主) (主) (三)

USvd & UCSD

Skip general case

B. K. Beare & A. A. Toda

Introduction	Main result	Proof of main result	Applications	Conclusion
	000000	000000	000000	
General case				



First show that $\rho(V \odot \Pi \odot M(s))$ is a convex function of s on $\mathcal{I}_{\text{resp}}$

USvd & UCSD

B. K. Beare & A. A. Toda

		Proof of main result	Applications	Conclusion
	000 0000000	000000 0 00000	00000 000000	
General case				

Step 1: $\rho(V \odot \Pi \odot M(s)))$ is convex

▶ In general, if $0 \le A \le B$ and $\theta \in (0,1)$, it is known that

 $ho(A) \leq
ho(B) \quad ext{and} \quad
ho(A^{(heta)} \odot B^{(1- heta)}) \leq
ho(A)^{ heta}
ho(B)^{1- heta}$

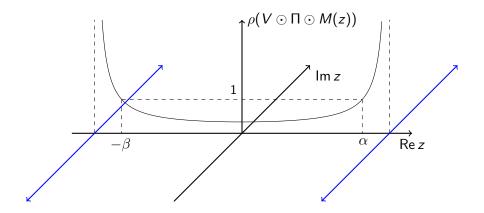
(element-wise power and product)

▶ Since *M* is a matrix of mgfs (which are log-convex), we have $M(\theta s_1 + (1 - \theta)s_2) \le M(s_1)^{(\theta)} \odot M(s_2)^{(1-\theta)}$. Hence

$$\begin{split} \rho(V \odot \Pi \odot M(\theta s_1 + (1 - \theta) s_2))) \\ &\leq \rho(V \odot \Pi \odot M(s_1)^{(\theta)} \odot M(s_2)^{(1 - \theta)}) \\ &= \rho((V \odot \Pi \odot M(s_1))^{(\theta)} \odot (V \odot \Pi \odot M(s_2))^{(1 - \theta)}) \\ &\leq \rho(V \odot \Pi \odot M(s_1))^{\theta} \rho(V \odot \Pi \odot M(s_2))^{1 - \theta}, \end{split}$$

so $\rho(V \odot \Pi \odot M(s))$ is log-convex (hence convex).

Introduction 00000	Main result 000 0000000	Proof of main result ○○○○○ ○○●○○○○	Applications 00000 000000	Conclusion
General case				

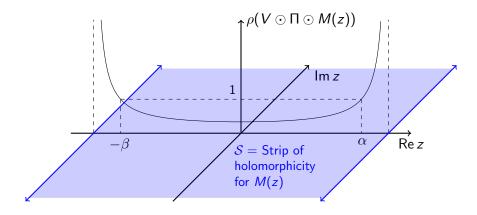


USyd & UCSD

... then extend things to the complex plane ...

B. K. Beare & A. A. Toda

		Proof of main result	Applications	Conclusion
	000 0000000	000000 000000	00000 000000	
General case				



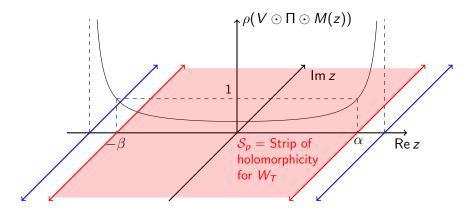
≣ ► < ≣ ►

USvd & UCSD

... and observe that M(z) is holomorphic on the strip $S = \{z \in \mathbb{C} : \operatorname{Re} z \in \mathcal{I}\}.$

B. K. Beare & A. A. Toda

Introduction	Main result	Proof of main result	Applications	Conclusion
00000	000 0000000	000000 0000000	00000 000000	
General case				



	Main result	Proof of main result	Applications	Conclusion
	000 0000000	000000 0000000	00000 000000	
General case				

Step 2: MGF of W_T

- ► Let $M_{W,n}(t,z) = \mathbb{E}\left[e^{zW_{T \wedge t}} \mid J_0 = n\right]$ be MGF of $W_{T \wedge t}$ conditional on $J_0 = n$.
- Using dynamic programming, can show

$$M_{W,n}(t,z) = \sum_{n'=1}^{N} \pi_{nn'} M_{nn'}(z) (1 - v_{nn'} + v_{nn'} M_{W,n'}(t-1,z)).$$

• Putting into a matrix and iterating, vector of MGF of W_T is

$$M_W(\infty, z) = A(z)^{-1}((E - V) \odot \Pi \odot M(z))e,$$

where $E = 1_{N \times N}$, $e = 1_{N \times 1}$, and $A(z) = I - V \odot \Pi \odot M(z)$. (Defined on $S_p = \{z \in \mathbb{C} : -\beta < \text{Re } z < \alpha\}$)

◆□▶ ◆□▶ ◆ヨ▶ ◆ヨ▶ ●□= ◇QQ

Introduction	Main result	Proof of main result	Applications	Conclusion
		000000		
General case				

Remaining step: check α is a simple pole

- Since ρ(V ⊙ Π ⊙ M(α)) = 1 and V ⊙ Π ⊙ M(α) is a nonnegative, irreducible matrix, by Perron-Frobenius theorem 1 is an eigenvalue of V ⊙ Π ⊙ M(α).
- Hence $A(\alpha) = I V \odot \Pi \odot M(\alpha)$ is noninvertible.
- A(z) = I − V ⊙ Π ⊙ M(z) is invertible in a neighborhood of α except at α (∵ det A(z) holomorphic on S and nonconstant, so zeroes are isolated).
- Since Perron root is simple, α is a simple pole of A(z)⁻¹, so we can apply Tauberian theorem.
- (Many more details to fill in, but refer to paper.)

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Introduction 00000	Main result 000 0000000	Proof of main result 000000 0000000	Applications ●0000 ○00000	Conclusion
Wealth distribution				

Application 1: Wealth distribution

- We build an Aiyagari (1994)-type heterogeneous-agent model (but with investment risk) in a Markovian setting and show that wealth distribution has a Pareto tail.
- Two types of agents, capitalists and workers.
- For simplicity, workers get wage and consume everything (hand-to-mouth).
- Capitalists own capital, hire labor, and produce.
- ► Idiosyncratic investment risk. States: s ∈ S = {1,..., S}, with transition probability matrix P = (p_{ss'}).

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

USvd & UCSD

Introduction 00000	Main result 000 000000	Proof of main result 000000 0000000	Applications 0●000 000000	Conclusion
Wealth distribution				

Capitalists

Log utility (for simplicity; EZ in paper)

$$\mathsf{E}_0 \sum_{t=0}^{\infty} [\beta(1-p)]^t \log c_t,$$

where $\beta > 0$: discount factor, $p \in (0, 1)$: bankruptcy probability.

- ► Constant returns to scale production function F_s(k, l) in state s, say Cobb-Douglas A_sk^αl^{1-α}.
- Budget constraint:

$$c_t + k_{t+1} + \omega I_t = F_s(k_t, I_t) + (1 - \delta)k_t,$$

where $\omega >$ 0: wage, $\delta \in [0,1]$: depreciation rate.

After bankruptcy, fraction κ ∈ (0,1) of capital recycled back to economy as endowment to new capitalists.

Introduction 00000	Main result 000 000000	Proof of main result 000000 0000000	Applications 00●00 000000	Conclusion
Wealth distribution				

Individual decision and equilibrium

Proposition

Given the wage $\omega > 0$, capital k, and state s, after choosing the optimal labor demand and consumption, the law of motion for capital becomes

$$k_{t+1} = \tilde{\beta} R_{s_t}(\omega) k_t,$$

where $ilde{eta} = eta(1-p)$ is the effective discount factor and

$$R_{s}(\omega) = \alpha (1-\alpha)^{1/\alpha-1} A_{s}^{1/\alpha} \omega^{1-1/\alpha} + 1 - \delta$$

is the gross return on capital.

Theorem

There exists a unique stationary equilibrium, and the wealth distribution has a Pareto upper tail with exponent $\zeta > 1$.

B. K. Beare & A. A. Toda

Introduction 00000	Main result 000 0000000	Proof of main result 000000 0000000	Applications 000€0 000000	Conclusion
Wealth distribution				

Numerical example

- Numerical example: β = 0.96, p = 0.025, capital share
 α = 0.38, depreciation δ = 0.08, capital recovery rate κ = 0.8.
- ▶ Log productivity is AR(1) with mean zero,

$$\log A_t = \rho \log A_{t-1} + \varepsilon_t, \quad \varepsilon_t \sim N(0, \sigma^2),$$

where $\rho = 0.9$ and $\sigma = 0.1$, which we discretize using Farmer-Toda (2017 QE) method (S = 9 points).

• Pareto exponent
$$z = \zeta$$
 solves

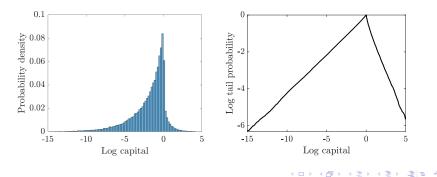
$$\lambda(z) :=
ho(P\operatorname{\mathsf{diag}}(\mathrm{e}^{z\log ilde{eta} R_{s}(\omega)})) = rac{1}{1-
ho},$$

and obtain $\zeta = 1.0814$.

B. K. Beare & A. A. Toda

Simulation

▶ Simulate economy with 100,000 agents and estimate tail exponent by maximum likelihood. $\hat{\zeta} = 1.0485$, which is close to theoretical value.



USvd & UCSD

B. K. Beare & A. A. Toda

Introduction 00000	Main result 000 0000000	Proof of main result 000000 0000000	Applications ○○○○ ●○○○○○	Conclusion
Municipality population	s			

Application 2: Power law in Japanese municipalities

- Main question: are time series properties of population dynamics estimated from panel consistent with a stationary Pareto distribution estimated from cross-section?
- Data:
 - Japanese census data of municipality populations (1970–2010, every five years)
 - ► 1741 municipalities, but merge 23 Tokyo wards into "Tokyo city" (hence cross-sectional sample size 1741 - 23 + 1 = 1719)

Image: Image:

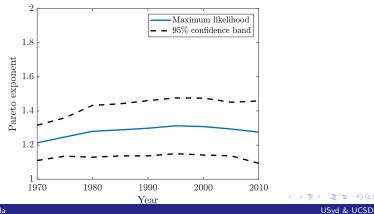
Spreadsheet available from Japanese Cabinet Office

글 눈 옷 글 눈 글

Introduction 00000	Main result 000 0000000	Proof of main result 000000 0000000	Applications	Conclusion
Municipality populations				

Cross-sectional estimation

Estimate Pareto exponent by maximum likelihood (Hill estimator).

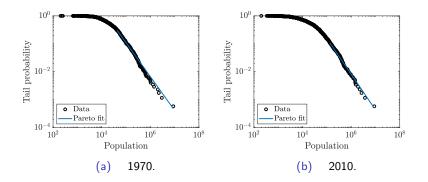


ъ

B. K. Beare & A. A. Toda

Introduction 00000	Main result 000 0000000	Proof of main result 000000 0000000	Applications ○○○○ ○○●○○○	Conclusion
Municipality populat	ions			

Cross-sectional estimation



B. K. Beare & A. A. Toda

Geometrically Stopped Markovian Random Growth Processes and Pareto Tails

▶ 重⊫ ∽९० USyd & UCSD

-∢ ≣⇒

Introduction 00000	Main result 000 0000000	Proof of main result 000000 0000000	Applications 0000 000000	Conclusion
Municipality populations				

Panel estimation

Assume relative size S_{it} of municipality i in year t follows random growth process

$$S_{i,t+1}=G_{i,t+1}S_{it},$$

where $G_{i,t+1}$: gross growth rate between year t and t + 1.

N-state Markov switching model with conditionally Gaussian shocks:

$$\log G_{i,t+1} \mid n_{it} = n \sim N(\mu_n, \sigma_n^2),$$

USvd & UCSD

where state n_{it} evolves as a Markov chain with transition probability matrix Π .

Introduction 00000	Main result 000 0000000	Proof of main result 000000 0000000	Applications ○○○○○ ○○○○●○	Conclusion
Municipality populations				

Panel estimation

- Consider N = 1,...,5; estimate parameters by maximum likelihood using Hamilton (1989) filter and expectation-maximization algorithm.
- Compute implied Pareto exponent by solving

$$(1-\rho)\rho(\mathsf{\Pi}\operatorname{\mathsf{diag}}(\mathrm{e}^{\mu_1s+\sigma_1^2s^2/2},\ldots,\mathrm{e}^{\mu_Ns+\sigma_N^2s^2/2}))=1.$$

(日) (同) (三) (三)

B. K. Beare & A. A. Toda

Introduction 00000	Main result 000 000000	Proof of main result 000000 0000000	Applications ○○○○○ ○○○○●○	Conclusion
Municipality population	ıs			

Panel estimation

- Consider N = 1,...,5; estimate parameters by maximum likelihood using Hamilton (1989) filter and expectation-maximization algorithm.
- Compute implied Pareto exponent by solving

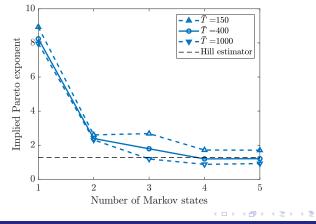
$$(1-\rho)\rho(\mathsf{\Pi}\operatorname{\mathsf{diag}}(\mathrm{e}^{\mu_1s+\sigma_1^2s^2/2},\ldots,\mathrm{e}^{\mu_Ns+\sigma_N^2s^2/2}))=1.$$

- Choosing mean age $\overline{T} = 1/p$:
 - Meiji Restoration is in 1868, so lower bound $\overline{T} = 150$.
 - Kamakura Shogunate started in 1185, so upper bound $\bar{T} = 1000$.
 - ► Tokugawa Shogunate started and moved capital to Tokyo in 1603, so $\overline{T} = 400$ reasonable.
 - ► Hence consider p = 1/1000, 1/400, 1/150.

Introduction 00000	Main result 000 0000000	Proof of main result 000000 0000000	Applications ○○○○○ ○○○○○●	Conclusion
Municipality populations				

Implied Pareto exponent

• With N = 1 (iid), $\alpha \approx 8 \gg 1$.



USyd & UCSD

B. K. Beare & A. A. Toda

Conclusion

- Geometrically stopped Markovian random growth processes have Pareto tails under weak assumptions.
- Wealth distributions in heterogeneous-agent models have Pareto tails with investment risk.
 - Known for special models, but here general formula.
- In Japanese municipality population data, time series properties of growth process and cross-sectional distribution of levels can only be reconciled with Markovian dynamics.
- Our theoretical results provide a technical tool to study such models.

< 口 > < 同

Markov additive process

Definition (Markov additive process)

Let $\mathcal{N} = \{1, \ldots, N\}$ be a finite set. A bivariate Markov process $(W, J) = \{W_t, J_t\}_{t=0}^{\infty}$ on the state space $\mathbb{R} \times \mathcal{N}$ is called a *Markov* additive process if $P(W_0 = 0) = 1$ and the increments of W are governed by J in the sense that

$$\mathsf{E}\left[f(W_{t+s}-W_t)g(J_{t+s})\,|\,\mathcal{F}_t\right] = \mathsf{E}\left[f(W_s-W_0)g(J_s)\,|\,J_0\right]$$

for all $s, t \in \{0\} \cup \mathbb{N}$ and all nonnegative measurable functions f and g.

▶ Go back

◆□> ◆圖> ◆目> ◆目> 三日日