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This paper

I We study the tail behavior of

WT =
T∑
t=1

Xt ,

where
I {Xt}∞t=1: some stochastic process,
I T : some stopping time.

I Main result: WT has exponential tails under fairly mild
conditions; simple formula for the tail exponent α.

I Example: if {Xt}∞t=1 is iid and T is geometric with mean 1/p,
then

(1− p) E[eαX ] = 1.
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Why this problem is interesting

I Many empirical size distributions obey power laws
(e.g., city size, firm size, income, consumption, wealth, etc.)

P(S > s) ∼ s−α,

where S : size.

I Popular explanation is “random growth model”: St = GtSt−1,
where G : gross growth rate.

I Taking logarithm and setting Wt = log St , Xt = log Gt , we
obtain the random walk

Wt = Wt−1 + Xt .

Hence if W0 = 0, we have WT =
∑T

t=1 Xt .
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Questions

I Most existing explanations using random growth assume iid
Gaussian environment (geometric Brownian motion; Reed,
2001).

I Given ubiquity of power law distributions in empirical data
(likely non-iid and non-Gaussian), generative mechanism
should be robust (not depend on iid Gaussian assumptions).

Questions:

1. Do non-Gaussian, Markovian random growth processes
generate Pareto tails?

2. If so, how is Pareto exponent determined and how does it
depend on exogenous parameters?

B. K. Beare & A. A. Toda USyd & UCSD

Geometrically Stopped Markovian Random Growth Processes and Pareto Tails



Introduction Main result Proof of main result Applications Conclusion

Contribution

I Characterize tail behavior of random growth models with
non-Gaussian, Markovian shocks.

1. Analytical determination of Pareto exponent.
2. Comparative statics.

I Two economic applications:

1. Characterize Pareto tail behavior of wealth distribution in
heterogeneous-agent models with idiosyncratic investment risk.

2. Estimate random growth model using Japanese municipality
population data. Model consistent with observed Pareto
exponent but only after allowing for Markovian dynamics.
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Basic setup

Basic setup
Object of interest:

I We seek to characterize the behavior of tail probabilities

P(WT > w) and P(WT < −w)

as w →∞, where. . .

Markov additive process:
I {Wt , Jt}∞t=0 is a Markov additive process, which means. . .

Hidden Markov state:
I {Jt}∞t=0 is a time homogeneous Markov chain taking values in
N = {1, . . . ,N}.

I The transition probability matrix is Π = (πnn′), where
πnn′ = P(J1 = n′ | J0 = n).

I Initial condition: $ is the N × 1 vector of probabilities
P(J0 = n), n = 1, . . . ,N.
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Basic setup

Basic setup
Increment process:

I W0 = 0, Wt =
∑t

s=1 Xs .

I Distribution of increment Xt = Wt −Wt−1 depends only on
(Jt−1, Jt) = (n, n′). Markov additive process

I Special cases:

1. If N = 1, then {Xt}∞t=1 is iid.
2. If Xt = constant conditional on Jt , then {Xt}∞t=1 is a

finite-state Markov chain.

Stopping time:

I {Wt}∞t=0 stops with state-dependent probability.

I vnn′ = P(T > t | Jt−1 = n, Jt = n′,T ≥ t): conditional
survival probability.

I V = (vnn′): survival probability matrix.

B. K. Beare & A. A. Toda USyd & UCSD

Geometrically Stopped Markovian Random Growth Processes and Pareto Tails



Introduction Main result Proof of main result Applications Conclusion

Basic setup

Basic setup
Conditional moment generating function:

I For s ∈ R, define
Mnn′(s) = E

[
esX1

∣∣ J0 = n, J1 = n′
]
∈ (0,∞].

I M(s) = (Mnn′(s)): N × N matrix of conditional MGFs.

Region of convergence:

I We define

I =
{

s ∈ R : Mnn′(s) <∞ for all n, n′ ∈ N
}
.

I I is an interval containing zero, with possibly infinite
endpoints.

I I is the intersection of the N2 regions of convergence of the
conditional moment generating functions of Xt given
(Jt−1, Jt) = (n, n′).
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Main result

Assumption

Assumption

1. The matrix V � Π is irreducible.

2. There exists a pair (n, n′) such that vnn′ < 1 and πnn′ > 0.

I V � Π is Hadamard (entry-wise) product.

I A matrix A is irreducible if for any pair (n, n′), there exists k
such that |A|knn′ > 0.

I Intuitively, irreducibility of V � Π means we can transition
from n to n′ eventually without stopping.

I vnn′ < 1 and πnn′ > 0 guarantees T <∞ almost surely.

I ρ(A): spectral radius (largest absolute value of all
eigenvalues) of A.
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Main result

Main result

Theorem
As a function of s ∈ I, the spectral radius ρ(V � Π�M(s)) is
convex and less than 1 at s = 0. There can be at most one
positive α ∈ I such that

ρ(V � Π�M(α)) = 1,

and if such α exists in the interior of I then

lim
w→∞

1

w
logP(WT > w) = −α.

I Similar statement holds for lower tail (−β < 0 instead of
α > 0).
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Main result

Determination of α and β

s

ρ(V � Π�M(s))

−β α0

1

Left endpoint of I Right endpoint of I
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Main result

Refinement

Theorem
Let everything be as above. Then there exist A,B > 0 such that

lim
w→∞

eαwP(WT > w) = A,

lim
w→∞

eβwP(WT < −w) = B

except when there exist c > 0 and ann′ ∈ R such that

supp(X1|J0 = n, J1 = n′) ⊂ ann′ + cZ

for all n, n′ ∈ N . (We can take ann = 0 if vnnπnn > 0.)
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Main result

Geometrically stopped random growth processes

Theorem
Let everything be as above. Let S0 > 0 be a random variable
independent of WT satisfying E[Sα+ε0 ] <∞ for some ε > 0, and
define the random variable S = S0e

WT . Then there exist numbers
0 < A1 ≤ A2 <∞ such that

A1 = lim inf
s→∞

sαP(S > s) ≤ lim sup
s→∞

sαP(S > s) = A2,

with A1 = A2 = A unless unless there exist c > 0 and ann′ ∈ R
such that supp(X1|J0 = n, J1 = n′) ⊂ ann′ + cZ for all n, n′ ∈ N .

I S has a Pareto upper tail with exponent α.
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Main result

Comparative statics

I Pareto exponent α is implicitly determined by

ρ(V � Π�M(α)) = 1.

How does it vary with exogenous parameters?
I Perturb lifespan, growth, volatility, and persistence. Assume

I distribution of Xt conditional on (Jt−1, Jt) = (n, n′) is
parametrized as µnn′ + σnn′Ynn′ , where Ynn′ has mean zero,

I transition probability matrix is Π(τ) = τ I + (1− τ)Π for some
fixed Π.

I Use implicit function theorem.
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Main result

Comparative statics

Theorem
Let θ = (V , µ, σ, τ) be parameters, and suppose assumptions of
Theorem satisfied at θ0. Then there exists an open neighborhood
Θ of θ0 such that Pareto exponent α(θ) is continuously
differentiable on Θ. Furthermore,

1. ∂α/∂vnn′ ≤ 0: lifespan ↑ =⇒ inequality ↑.
2. ∂α/∂µnn′ ≤ 0: growth ↑ =⇒ inequality ↑.
3. ∂α/∂σnn′ ≤ 0: volatility ↑ =⇒ inequality ↑.
4. If vnn′ and Xt depend only on current state Jt = n′, then
∂α/∂τ ≤ 0: persistence ↑ =⇒ inequality ↑.
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Idea

Proof of main result

I The proof uses several mathematical results:

1. Nakagawa’s Tauberian Theorem and its refinement
2. Convex inequalities for spectral radius
3. Perron-Frobenius Theorem
4. Residue formula for matrix pencil inverses

I For the iid case, we can avoid 2–4 above.

Skip proof
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Idea

Laplace transform
I For a random variable X with cdf F , let

M(s) = E[esX ] =

∫ ∞
−∞

esx dF (x)

be its moment generating function (mgf), which is also known
as the (two-sided) Laplace transform.

I Since esx convex in s, so is M(s); hence its domain
I = {s ∈ R : M(s) <∞} is an interval. Let −β ≤ 0 ≤ α be
boundary points (may be 0 or ±∞).

I For z ∈ C, by definition of Lebesgue integral,

M(z) = E[ezX ] =

∫ ∞
−∞

ezx dF (x)

exists and finite if and only if Re z ∈ I. M(z) holomorphic on
strip of analiticity S = {z ∈ C : −β < Re z < α}.
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Idea

Strip of holomorphicity

0

Im z

Re z

Left abscissa of
convergence

Right abscissa of
convergence
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S = Strip of
holomorphicity
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Idea

Tauberian theorem

Theorem (Essentially, Theorem 5* of Nakagawa, 2007)

Let X be a real random variable and M(z) = E[ezX ] its Laplace
transform with right abscissa of convergence 0 < α <∞ and strip
of holomorphicity S. Suppose A := lims↑α(α− s)M(s) exists, and
let B be the supremum of all b > 0 such that M(z) + A(z − α)−1

continuously extends to S+b = S ∪ {z ∈ C : z = α + it, |t| < b}.
Suppose that B > 0. Then we have

2πA/B

e2πα/B − 1
≤ lim inf

x→∞
eαxP(X > x)

≤ lim sup
x→∞

eαxP(X > x) ≤ 2πA/B

1− e−2πα/B
,

where the bounds should be read as A/α if B =∞.
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Idea

Discussion

I By previous result, taking logarithm and letting x →∞, we
get

lim
x→∞

logP(X > x)

x
= −α,

which is Nakagawa (2007)’s main result.

I Example: mgf of exponential distribution with exponent α is

M(z) =

∫ ∞
0

αe−αxezx dx =
α

α− z
,

so we can take A = α and B =∞.
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Idea

Proof of main result for iid case
I Let {Xt}∞t=1 be iid with mgf MX (z) = E[ezX ].
I mgf of WT =

∑T
t=1 Xt when T is geometric with mean 1/p is

MW (z) =
∞∑
k=1

(1− p)k−1p(MX (z))k =
pMX (z)

1− (1− p)MX (z)
.

I Since MX (z) holomorphic, pole of MW (z) satisfies
MX (z) = 1

1−p .
I Using convexity of MX (s + it) with respect to s, easy to show

pole is simple.
I Hence assumption of Tauberian theorem satisfied. Tail

exponents satisfy

E[eαX ] = E[e−βX ] =
1

1− p
.

Skip general case
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General case

Strategy for general case

s

ρ(V � Π�M(s))

−β α0

1

Left endpoint of I Right endpoint of I

First show that ρ(V �Π�M(s)) is a convex function of s on I. . .
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General case

Step 1: ρ(V � Π�M(s))) is convex

I In general, if 0 ≤ A ≤ B and θ ∈ (0, 1), it is known that

ρ(A) ≤ ρ(B) and ρ(A(θ) � B(1−θ)) ≤ ρ(A)θρ(B)1−θ

(element-wise power and product)

I Since M is a matrix of mgfs (which are log-convex), we have
M(θs1 + (1− θ)s2) ≤ M(s1)(θ) �M(s2)(1−θ). Hence

ρ(V � Π�M(θs1 + (1− θ)s2)))

≤ ρ(V � Π�M(s1)(θ) �M(s2)(1−θ))

= ρ((V � Π�M(s1))(θ) � (V � Π�M(s2))(1−θ))

≤ ρ(V � Π�M(s1))θρ(V � Π�M(s2))1−θ,

so ρ(V � Π�M(s)) is log-convex (hence convex).

B. K. Beare & A. A. Toda USyd & UCSD

Geometrically Stopped Markovian Random Growth Processes and Pareto Tails



Introduction Main result Proof of main result Applications Conclusion

General case

Strategy for general case

Re z

ρ(V � Π�M(z))

Im z

−β α

1

. . . then extend things to the complex plane . . .
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General case

Strategy for general case

Re z

ρ(V � Π�M(z))

Im z

−β α

1

S = Strip of
holomorphicity
for M(z)

. . . and observe that M(z) is holomorphic on the strip
S = {z ∈ C : Re z ∈ I}.
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General case

Strategy for general case

Re z

ρ(V � Π�M(z))

Im z

−β α

1

Sp = Strip of
holomorphicity
for WT

Finally, show that the Laplace transform of WT is holomorphic on
the strip Sp = {z ∈ C : −β < Re z < α}, check that it has poles
at −β and α, and apply Nakagawa’s theorem.
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General case

Step 2: MGF of WT

I Let MW ,n(t, z) = E
[
ezWT∧t

∣∣ J0 = n
]

be MGF of WT∧t
conditional on J0 = n.

I Using dynamic programming, can show

MW ,n(t, z) =
N∑

n′=1

πnn′Mnn′(z)(1− vnn′ + vnn′MW ,n′(t − 1, z)).

I Putting into a matrix and iterating, vector of MGF of WT is

MW (∞, z) = A(z)−1((E − V )� Π�M(z))e,

where E = 1N×N , e = 1N×1, and A(z) = I − V � Π�M(z).
(Defined on Sp = {z ∈ C : −β < Re z < α})
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General case

Remaining step: check α is a simple pole

I Since ρ(V � Π�M(α)) = 1 and V � Π�M(α) is a
nonnegative, irreducible matrix, by Perron-Frobenius theorem
1 is an eigenvalue of V � Π�M(α).

I Hence A(α) = I − V � Π�M(α) is noninvertible.

I A(z) = I −V �Π�M(z) is invertible in a neighborhood of α
except at α (∵ det A(z) holomorphic on S and nonconstant,
so zeroes are isolated).

I Since Perron root is simple, α is a simple pole of A(z)−1, so
we can apply Tauberian theorem.

I (Many more details to fill in, but refer to paper.)
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Wealth distribution

Application 1: Wealth distribution

I We build an Aiyagari (1994)-type heterogeneous-agent model
(but with investment risk) in a Markovian setting and show
that wealth distribution has a Pareto tail.

I Two types of agents, capitalists and workers.

I For simplicity, workers get wage and consume everything
(hand-to-mouth).

I Capitalists own capital, hire labor, and produce.

I Idiosyncratic investment risk. States: s ∈ S = {1, . . . ,S},
with transition probability matrix P = (pss′).

B. K. Beare & A. A. Toda USyd & UCSD
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Wealth distribution

Capitalists
I Log utility (for simplicity; EZ in paper)

E0

∞∑
t=0

[β(1− p)]t log ct ,

where β > 0: discount factor, p ∈ (0, 1): bankruptcy
probability.

I Constant returns to scale production function Fs(k, l) in state
s, say Cobb-Douglas Askαl1−α.

I Budget constraint:

ct + kt+1 + ωlt = Fs(kt , lt) + (1− δ)kt ,

where ω > 0: wage, δ ∈ [0, 1]: depreciation rate.
I After bankruptcy, fraction κ ∈ (0, 1) of capital recycled back

to economy as endowment to new capitalists.
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Wealth distribution

Individual decision and equilibrium

Proposition

Given the wage ω > 0, capital k, and state s, after choosing the
optimal labor demand and consumption, the law of motion for
capital becomes

kt+1 = β̃Rst (ω)kt ,

where β̃ = β(1− p) is the effective discount factor and

Rs(ω) = α(1− α)1/α−1A
1/α
s ω1−1/α + 1− δ

is the gross return on capital.

Theorem
There exists a unique stationary equilibrium, and the wealth
distribution has a Pareto upper tail with exponent ζ > 1.
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Wealth distribution

Numerical example

I Numerical example: β = 0.96, p = 0.025, capital share
α = 0.38, depreciation δ = 0.08, capital recovery rate κ = 0.8.

I Log productivity is AR(1) with mean zero,

log At = ρ log At−1 + εt , εt ∼ N(0, σ2),

where ρ = 0.9 and σ = 0.1, which we discretize using
Farmer-Toda (2017 QE) method (S = 9 points).

I Pareto exponent z = ζ solves

λ(z) := ρ(P diag(ez log β̃Rs(ω))) =
1

1− p
,

and obtain ζ = 1.0814.
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Wealth distribution

Simulation

I Simulate economy with 100,000 agents and estimate tail
exponent by maximum likelihood. ζ̂ = 1.0485, which is close
to theoretical value.
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Municipality populations

Application 2: Power law in Japanese municipalities

I Main question: are time series properties of population
dynamics estimated from panel consistent with a stationary
Pareto distribution estimated from cross-section?

I Data:
I Japanese census data of municipality populations (1970–2010,

every five years)
I 1741 municipalities, but merge 23 Tokyo wards into “Tokyo

city” (hence cross-sectional sample size 1741− 23 + 1 = 1719)
I Spreadsheet available from Japanese Cabinet Office
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Municipality populations

Cross-sectional estimation
I Estimate Pareto exponent by maximum likelihood (Hill

estimator).
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Municipality populations

Cross-sectional estimation

(a) 1970. (b) 2010.
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Municipality populations

Panel estimation

I Assume relative size Sit of municipality i in year t follows
random growth process

Si ,t+1 = Gi ,t+1Sit ,

where Gi ,t+1: gross growth rate between year t and t + 1.

I N-state Markov switching model with conditionally Gaussian
shocks:

log Gi ,t+1 | nit = n ∼ N(µn, σ
2
n),

where state nit evolves as a Markov chain with transition
probability matrix Π.
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Municipality populations

Panel estimation

I Consider N = 1, . . . , 5; estimate parameters by maximum
likelihood using Hamilton (1989) filter and
expectation-maximization algorithm.

I Compute implied Pareto exponent by solving

(1− p)ρ(Π diag(eµ1s+σ
2
1s

2/2, . . . , eµN s+σ
2
N s

2/2)) = 1.

I Choosing mean age T̄ = 1/p:
I Meiji Restoration is in 1868, so lower bound T̄ = 150.
I Kamakura Shogunate started in 1185, so upper bound

T̄ = 1000.
I Tokugawa Shogunate started and moved capital to Tokyo in

1603, so T̄ = 400 reasonable.
I Hence consider p = 1/1000, 1/400, 1/150.
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Municipality populations

Implied Pareto exponent
I With N = 1 (iid), α ≈ 8� 1.
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Conclusion

I Geometrically stopped Markovian random growth processes
have Pareto tails under weak assumptions.

I Wealth distributions in heterogeneous-agent models have
Pareto tails with investment risk.

I Known for special models, but here general formula.

I In Japanese municipality population data, time series
properties of growth process and cross-sectional distribution of
levels can only be reconciled with Markovian dynamics.

I Our theoretical results provide a technical tool to study such
models.
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Markov additive process

Definition (Markov additive process)

Let N = {1, . . . ,N} be a finite set. A bivariate Markov process
(W , J) = {Wt , Jt}∞t=0 on the state space R×N is called a Markov
additive process if P(W0 = 0) = 1 and the increments of W are
governed by J in the sense that

E [f (Wt+s −Wt)g(Jt+s) | Ft ] = E [f (Ws −W0)g(Js) | J0]

for all s, t ∈ {0} ∪ N and all nonnegative measurable functions f
and g .

Go back
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